Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands
نویسندگان
چکیده
Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis in pigs and humans. This review examines the role of known S. suis virulence factors in adhesion and S. suis carbohydrate-based adhesion mechanisms, as well as the inhibition of S. suis adhesion by anti-adhesion compounds in in vitro assays. Carbohydrate-binding specificities of S. suis have been identified, and these studies have shown that many strains recognize Galα1-4Gal-containing oligosaccharides present in host glycolipids. In the era of increasing antibiotic resistance, new means to treat infections are needed. Since microbial adhesion to carbohydrates is important to establish disease, compounds blocking adhesion could be an alternative to antibiotics. The use of oligosaccharides as drugs is generally hampered by their relatively low affinity (micromolar) to compete with multivalent binding to host receptors. However, screening of a library of chemically modified Galα1-4Gal derivatives has identified compounds that inhibit S. suis adhesion in nanomolar range. Also, design of multivalent Galα1-4Gal-containing dendrimers has resulted in a significant increase of the inhibitory potency of the disaccharide. The S. suis adhesin binding to Galα1-4Gal-oligosaccharides, Streptococcal adhesin P (SadP), was recently identified. It has a Galα1-4Gal-binding N-terminal domain and a C-terminal LPNTG-motif for cell wall anchoring. The carbohydrate-binding domain has no homology to E. coli P fimbrial adhesin, which suggests that these Gram-positive and Gram-negative bacterial adhesins recognizing the same receptor have evolved by convergent evolution. SadP adhesin may represent a promising target for the design of anti-adhesion ligands for the prevention and treatment of S. suis infections.
منابع مشابه
Streptococcus suis interactions with the murine macrophage cell line J774: adhesion and cytotoxicity.
Streptococcus suis capsular type 2 is an important etiological agent of swine meningitis, and it is also a zoonotic agent. Since one hypothesis of the pathogenesis of S. suis infection is that bacteria enter the bloodstream and invade the meninges and other tissues in close association with mononuclear phagocytes, the objective of the present study was to evaluate the capacity of S. suis type 2...
متن کاملRecruitment of Factor H to the Streptococcus suis Cell Surface is Multifactorial
Streptococcus suis is an important bacterial swine pathogen and a zoonotic agent. Recently, two surface proteins of S. suis, Fhb and Fhbp, have been described for their capacity to bind factor H-a soluble complement regulatory protein that protects host cells from complement-mediated damages. Results obtained in this study showed an important role of host factor H in the adhesion of S. suis to ...
متن کاملThe involvement of MsmK in pathogenesis of the Streptococcus suis serotype 2
Streptococcus suis serotype 2 (SS2) is an important swine and human pathogen that causes global economic and public health problems. Virulent S. suis strains successfully maintain high bacterial concentrations in host blood and rapidly adapt to challenging environments within hosts. Successful survival in hosts is a major factor influencing the pathogenesis of SS2. We have previously identified...
متن کاملAttenuation of Streptococcus suis virulence by the alteration of bacterial surface architecture
NeuB, a sialic acid synthase catalyzes the last committed step of the de novo biosynthetic pathway of sialic acid, a major element of bacterial surface structure. Here we report a functional NeuB homologue of Streptococcus suis, a zoonotic agent, and systematically address its molecular and immunological role in bacterial virulence. Disruption of neuB led to thinner capsules and more susceptibi...
متن کاملAntiadhesive Molecules in Milk and Berries against Respiratory Pathogens
Bacterial attachment to host mucosal tissues is the essential first step in microbial colonization and pathogenesis. The strategy behind antiadhesive agents is to block the adhesion of pathogen to the host cells. Since this reduces the reservoir of bacteria in the human population, it may diminish the frequency of carriers and ultimately reduce the prevalence of bacterial infections. Thus, anti...
متن کامل